If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+9z-3=0
a = 3; b = 9; c = -3;
Δ = b2-4ac
Δ = 92-4·3·(-3)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{13}}{2*3}=\frac{-9-3\sqrt{13}}{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{13}}{2*3}=\frac{-9+3\sqrt{13}}{6} $
| 5-(1-2)g=12 | | 3.8=p/3/7.2 | | N=203n+2 | | 4a+-a=80 | | 19y=703 | | -14=-4+w/2 | | 2g^2+5g+3=0 | | -24t=-912 | | 11=3u+8 | | h+21=97 | | 4x=22+90 | | 11=3u | | 4z^2+9z+5=0 | | v+28=85 | | 4x-28=8 | | y/3=5=10 | | y/5+5=-10 | | f3= 4 | | 12=7=5y | | -89=5x+6 | | f3= 4f= | | 6x+54=9x+27 | | 29=5t-6 | | 14x+5=-5x-6(-3x+15)=5 | | 14x+18=22x+8 | | 4x^2+9x=47 | | X+0.2+x=6.00 | | q^2-80q+500=0 | | 4m=20= | | 3/2(x-3)=-5 | | 9|x+4|=54 | | 24=v/3+6 |